24 research outputs found

    Development of a low-alpha-emitting {\mu}-PIC for NEWAGE direction-sensitive dark-matter search

    Full text link
    NEWAGE is a direction-sensitive dark-matter-search experiment that uses a micro-patterned gaseous detector, or {\mu}-PIC, as the readout. The main background sources are {\alpha}-rays from radioactive contaminants in the {\mu}-PIC. We have therefore developed a low-alpha-emitting {\mu}-PICs and measured its performances. We measured the surface {\alpha}-ray emission rate of the {\mu}-PIC in the Kamioka mine using a surface {\alpha}-ray counter based on a micro TPC.Comment: 6 pages, 4 figure

    Study of Negative-Ion TPC Using {\mu}-PIC for Directional Dark Matter Search

    Full text link
    Negative-ion time projection chambers(TPCs) have been studied for low-rate and high-resolution applications such as dark matter search experiments. Recently, a full volume fiducialization in a self-triggering TPC was realized. This innovative technology demonstrated a significant reduction in the background with MWPC-TPCs. We studied negative-ion TPC using the {\mu}-PIC+GEM system and obtained sufficient gas gain with CS2_{2}gas and SF6_{6} gas at low pressures. We expect an improvement in detector sensitivity and angular resolution with better electronics

    New readout and data-acquisition system in an electron-tracking Compton camera for MeV gamma-ray astronomy (SMILE-II)

    Get PDF
    For MeV gamma-ray astronomy, we have developed an electron-tracking Compton camera (ETCC) as a MeV gamma-ray telescope capable of rejecting the radiation background and attaining the high sensitivity of near 1 mCrab in space. Our ETCC comprises a gaseous time-projection chamber (TPC) with a micro pattern gas detector for tracking recoil electrons and a position-sensitive scintillation camera for detecting scattered gamma rays. After the success of a first balloon experiment in 2006 with a small ETCC (using a 10×\times10×\times15 cm3^3 TPC) for measuring diffuse cosmic and atmospheric sub-MeV gamma rays (Sub-MeV gamma-ray Imaging Loaded-on-balloon Experiment I; SMILE-I), a (30 cm)3^{3} medium-sized ETCC was developed to measure MeV gamma-ray spectra from celestial sources, such as the Crab Nebula, with single-day balloon flights (SMILE-II). To achieve this goal, a 100-times-larger detection area compared with that of SMILE-I is required without changing the weight or power consumption of the detector system. In addition, the event rate is also expected to dramatically increase during observation. Here, we describe both the concept and the performance of the new data-acquisition system with this (30 cm)3^{3} ETCC to manage 100 times more data while satisfying the severe restrictions regarding the weight and power consumption imposed by a balloon-borne observation. In particular, to improve the detection efficiency of the fine tracks in the TPC from \sim10\% to \sim100\%, we introduce a new data-handling algorithm in the TPC. Therefore, for efficient management of such large amounts of data, we developed a data-acquisition system with parallel data flow.Comment: 11 pages, 24 figure
    corecore